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Abstract Reliable estimates of historical and current biogeochemistry are essential for understanding
past ecosystem variability and predicting future changes. Efforts to translate improved physical ocean state
estimates into improved biogeochemical estimates, however, are hindered by high biogeochemical sensi-
tivity to transient momentum imbalances that arise during physical data assimilation. Most notably, the
breakdown of geostrophic constraints on data assimilation in equatorial regions can lead to spurious
upwelling, resulting in excessive equatorial productivity and biogeochemical fluxes. This hampers efforts to
understand and predict the biogeochemical consequences of El Ni~no and La Ni~na. We develop a strategy to
robustly integrate an ocean biogeochemical model with an ensemble coupled-climate data assimilation sys-
tem used for seasonal to decadal global climate prediction. Addressing spurious vertical velocities requires
two steps. First, we find that tightening constraints on atmospheric data assimilation maintains a better
equatorial wind stress and pressure gradient balance. This reduces spurious vertical velocities, but those
remaining still produce substantial biogeochemical biases. The remainder is addressed by imposing stricter
fidelity to model dynamics over data constraints near the equator. We determine an optimal choice of
model-data weights that removed spurious biogeochemical signals while benefitting from off-equatorial
constraints that still substantially improve equatorial physical ocean simulations. Compared to the uncon-
strained control run, the optimally constrained model reduces equatorial biogeochemical biases and mark-
edly improves the equatorial subsurface nitrate concentrations and hypoxic area. The pragmatic approach
described herein offers a means of advancing earth system prediction in parallel with continued data assim-
ilation advances aimed at fully considering equatorial data constraints.

1. Introduction

Current state-of-the-art global ocean models can successfully simulate many aspects of large-scale ocean
circulation and its variability. Biases due to imperfect representation of ocean processes and forcing, how-
ever, persist across regional and ocean-basin scales (Danabasoglu et al., 2014; Griffies et al., 2014; Large &
Yeager, 2009). In addition, ocean prediction efforts require initializations that, to the extent possible, contain
dynamics (i.e., waves and instabilities) that are in phase with those observed. Data assimilation aims to
improve estimates of ocean conditions by combining diverse observations with the dynamical equations
embedded in ocean models. In recent decades, ocean data assimilation systems have advanced consider-
ably from a largely experimental endeavor to a key element of operational ocean retrospective state esti-
mates, nowcasts, and seasonal to multiannual forecasts (Balmaseda et al., 2013; Behringer et al., 1998;
Carton & Giese, 2008; Chang et al., 2013; Hoteit et al., 2010; Kohl & Stammer, 2008; Saha et al., 2014; Storto
et al., 2016; Yang et al., 2013; Zhang et al., 2007).

Improved ocean data assimilation and prediction has spurred expanding applications beyond inference of
physical properties, such as phytoplankton biomass monitoring, ocean carbon cycle monitoring/assess-
ment, and marine resource management (Brasseur et al., 2009; Tommasi et al., 2017a, 2017b). Physical prop-
erties (e.g., temperature and salinity anomalies) often provide useful proxies for marine resource responses
for limited periods, but such relationships eventually break down (Myers, 1998). More holistic estimates and
predictions of ecosystem state are needed for robust prediction. Such efforts are further motivated by
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potentially abrupt changes in ecosystem states (Mollmann et al., 2015) and the potential for ecosystem pro-
cesses to amplify subtle changes in physical or lower trophic level perturbations (Chust et al., 2014; Kearney
et al., 2013; Stock et al., 2014a, 2017).

While there is a clear need for biogeochemical assimilation and prediction, the field is less mature than its
physical counterpart. This reflects an array of added challenges including uncertainties originated from the
representation of physical and biogeochemical processes in earth system models, relatively sparse global-
scale observations of subsurface biogeochemical variables, and the large number of biogeochemical tracers
that increase the complexity of relationships between observed variables and those that need to be
inferred. In addition, the large positive skewness of biological variables often violates the Gaussian distribu-
tion assumption used in some data assimilation approaches (Edwards et al., 2015; Hawkins & Sutton, 2009;
Song et al., 2016).

Another serious impediment to progress toward fully coupled physical-biogeochemical data assimilation is
the extremely high sensitivity of ocean biogeochemistry to spurious vertical velocities that can arise due to
dynamical imbalances induced during data assimilation (Anderson et al., 2000; Raghukumar et al., 2015).
Across most of the global ocean, the exchange of nutrients between the nutrient-rich ocean interior and
well-lit but nutrient-poor surface ocean is tightly regulated by a sharp pycnocline and associated sharp
nutricline. Even small spurious vertical transports across this surface can have disastrous impacts on biogeo-
chemical states. This issue has proven to be most acute along the equator, where the dominant geostrophic
balance shaping large-scale ocean circulation breaks down. Without this dynamical constraint, perturba-
tions to the ocean density field introduce a shock that can induce waves and instabilities similar to those
generated by westerly wind bursts (Balmaseda et al., 2007; Bell et al., 2004; Burgers et al., 2002; Vidard et al.,
2007; Waters et al., 2017; While et al., 2010).

Previous studies have proposed several possible approaches to improve the performance of assimilative
models at the equator. For example, Burgers et al. (2002) hypothesized that the poor performance of data
assimilation for velocity fields is due to the lack of balance in the data assimilation updates near the equa-
tor. They used an extended ‘‘geostrophic’’ relationship and applied east-west velocity increments together
with height increments. Bell et al. (2004) suggested a pressure correction scheme to update slowly evolving
bias fields, which aims to dampen spurious circulations during assimilation. They calculated a bias-corrected
pressure field from temperature and salinity biases, and then applied it in the horizontal momentum equa-
tions. Waters et al. (2017) proposed a new approach, named as incremental pressure correction scheme, to
balance equatorial increments and to reduce initialization shock, which is based on the pressure correction
scheme suggested by Bell et al. (2004), but applied over shorter time scales. Although these studies show
positive results, the spurious velocity problem has not been satisfactorily resolved enough to prevent the
bias in sensitive biogeochemistry variables.

The range of challenges described in the preceding paragraphs has led many biogeochemical assimilation
efforts to adopt idealized model frameworks or to focus on regional scales where ocean biogeochemical
observing systems are well established (Ciavatta et al., 2014; Fontana et al., 2009; Hemmings et al., 2008; Ish-
izaka, 1990; Natvik & Evensen, 2003; Pelc et al., 2012; Shulman et al., 2013). A few pioneering studies, how-
ever, have tested global-scale biogeochemical assimilation (Ford & Barciela, 2017; Ford et al., 2012; Gregg,
2008; Gregg et al., 2017; Valsala & Maksyutov, 2010; While et al., 2012). These studies assimilate a single bio-
geochemical variable—either satellite-retrieved chlorophyll data or observed pCO2 data—into a global
ocean model and show a general improvement of their related biogeochemical prognostic variables com-
pared with unconstrained model simulations. The effects of spurious vertical motions on biogeochemical
variables are limited by biogeochemical assimilation in data-rich regions, but such corrections hinder inter-
pretation of data assimilative hindcasts, become more difficult with increasing biogeochemical complexity,
and do not limit impacts in data-poor regions.

The purpose of this study is to investigate approaches for integrating global biogeochemistry and data
assimilative ocean physics that address the issue of spurious vertical velocity while still gaining benefits
from improved ocean state estimation. We start from a baseline solution integrating a 33 tracer ocean bio-
geochemical model (Stock et al., 2014b) with an established global ocean data assimilation system that is
based on an ensemble Kalman Filter (EnKF) approach applied to the ocean and atmosphere (Zhang et al.,
2007). Predictably, the equatorial biogeochemistry of this baseline integration is severely degraded relative
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to nondata assimilative models due to spurious vertical velocities along the equator, as discussed above.
We then consider two means of overcoming this issue. First, noting that the primary dynamical balance at
the equator is between the wind and the zonal pressure gradient, we assess the impact of strengthening
data constraints on the atmospheric state estimation. We will show that this reduces, but does not fully
address, the issue of spurious vertical velocity.

For our second series of experiments, we consider the effect of modulating the relative weighting of the
model and the observations in the data assimilation process. Data assimilation rests on the hypothesis that
the true ocean state lies between the model and observations, with weightings chosen according to the rel-
ative confidence on each. Given the high sensitivity of ocean biogeochemistry to spurious vertical motions
arising from dynamical imbalances introduced by data assimilation, an additional pragmatic approach that
can be considered is to impose stricter fidelity to the dynamical model solution. Our experiments thus
answer two critical questions: (1) how strongly must one weight the dynamical model solution relative to
the observations in the vicinity of the equator to eliminate spurious vertical velocities? and (2) does data
assimilation still offer meaningful physical and biogeochemical improvements relative to the nonassimila-
tive case at the threshold determined by question 1? We find that it is indeed still possible to improve phys-
ical and biogeochemical state estimates while down-weighting observations at the equator. We then
discuss the implications of this result for biogeochemical state estimation, highlighting the potential bene-
fits of improved physical data assimilation for biogeochemical prediction.

2. Methods

2.1. Model
This study uses the Geophysical Fluid Dynamics Laboratory (GFDL) ensemble coupled data assimilation sys-
tem (ECDA). The ECDA employs GFDL’s fully coupled atmosphere-land-sea ice-ocean model (CM2.1), and an
ensemble Kalman filter assimilation scheme is applied to the coupled model (Delworth et al., 2006; Zhang
et al., 2007). The horizontal resolution of the atmosphere and land models is 2.58 longitude 3 28 latitude on
a regular grid, while the ocean and sea ice models have the resolution of 18 with telescoping to 1/38 meridi-
onal spacing near the equator. In the ECDA, both atmosphere and ocean states are constrained by observa-
tions, which ensures a better-balanced state between atmosphere and ocean variables than if only one
component of the climate system is constrained. All simulations using the ECDA are run with a 12 member
ensemble that is used to estimate the probability distribution function of climate states.

The ocean in the ECDA is constrained by in situ ocean temperature and salinity observations that include
oceanic profiles (XBT, CTD, OSD, MBT, and MRB) from World Ocean Database (WOD), Argo profiles since
2000, and global temperature-salinity profile program (GTSPP) data sets since 2009. Daily SST obtained
from NOAA optimum interpolation SST v2 high-resolution data set is also used in the ECDA (Reynolds et al.,
2007). The horizontal correlation scale is 108 for both longitude and latitude that is multiplied by a cosine
function of latitude up to 808N (S). This setting allows the correlation scale to be consistent with the charac-
teristics of the Rossby deformation radius for a global analysis scheme. Given that salinity observations are
more sparse than temperature data, ECDA uses pseudosalinity obtained from the predetermined
temperature-salinity relationship for the period 1993–2002 (Chang et al., 2011).

The atmosphere in the ECDA is constrained by the National Centers for Environmental Prediction, Depart-
ment of Energy (NCEP-DOE) Reanalysis 2 (Kanamitsu et al., 2002). The 6 h mean atmospheric winds and
temperature are assimilated in the ECDA. The correlation scale employed in the atmospheric data assimila-
tion is 500 km for both winds and temperature, which is the location-independent horizontal scale. More
details on the ECDA can be found in Zhang et al. (2007) and Chang et al. (2013).

The Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) (Stock et al., 2014b) ecological model is
integrated with the ECDA to drive ocean biogeochemistry in these physically constrained ocean simula-
tions. COBALT considers 33 tracers to resolve global-scale carbon, nitrogen, phosphorus, iron, and silica
cycles with three phytoplankton and three zooplankton groups, which can be coupled with fisheries food
web models (Watson et al., 2015). Chlorophyll simulated from COBALT is used to estimate shortwave atten-
uation coefficients that determine the vertical shortwave heating in the ocean. Global ocean simulations
with COBALT have been shown to capture the observed large-scale biogeochemical patterns across ocean
biomes (Stock et al., 2014b; Tagliabue et al., 2016).
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2.2. Experiments
Our baseline data assimilation experiment, referred to as DA-BGC, is the default assimilation run used for
physical climate applications of ECDA coupled with the biogeochemical model. This run is notable for hav-
ing relatively permissive atmospheric constraints (Table 1) that allow the atmosphere to respond more
freely to changes in ocean state, but also make the assimilation more vulnerable to atmospheric drift. The
data assimilation experiment was integrated for the period 1990–2015 and we analyzed the last 25 years of
data excluding the first 1 year spin-up period.

The second data assimilation run, referred to as DA-BGC_Atm, uses the same model configuration as DA-
BGC but lowers the error estimates on the atmospheric data constraints. As described in section 1, the
intent of this run is to test whether more stringent data constraints on the atmospheric state can reduce
dynamical inconsistencies in the equatorial wind-pressure gradient balance generating spurious vertical
velocities. This stringent atmospheric data constraint is made by dividing observational standard errors of
atmospheric winds and temperature by 10.

Our third set of experiments build off the DA-BGC_Atm configuration. We modified the strength of ocean
data constraint in the equatorial region relative to the model constraint by inflating the observational data
uncertainty by a factor f that is ramped up linearly from the 108 latitude to the equator. We varied the inflation
of the data uncertainty from the default setting of 0.58C to an extreme value of 1068C, with an equal inflation
of temperature and salinity fields. Larger data inflation values essentially replace strong adjustments to indi-
vidual data points at the equator with weaker or negligible adjustments to correct for lower frequency biases
without overly strong dynamical perturbations at any given point. A similar approach without data assimila-
tion in the equatorial region has been qualitatively explored in an unpublished work (Ford & Barciela, 2015).
The original model-data weights (i.e., 0.58C for temperature and 0.1 g kg21 for salinity) were maintained
throughout the rest of the global ocean. While we modulated the observational variance to shift the weight-
ing of the observations relative to dynamical fidelity with the model, we note that an equivalent result could
be obtained by reducing the model uncertainty. Either approach is consistent with intent of the experiment:
to impose stricter fidelity to the dynamical model at the equator in recognition of the high sensitivity of bio-
geochemical results to spurious vertical velocities. We completed this set of experiments by examining the
sensitivity of our solution to the latitudinal extent of the elevated observational error, testing lower (28 band
north and south of the equator) and upper (208 band). Due to computational limitations, sensitivity experi-
ments testing relative weightings of model versus data were shorter duration (2001–2005).

For each setting of data assimilation experiments, we assessed the model’s fidelity with both physical and bio-
geochemical fields from the observations. The observed temperature field used for the assessment is
obtained from the EN4 data sets (Good et al., 2013). The observed nitrate and oxygen are obtained from
World Ocean Database (WOD) and the chlorophyll concentration is from the satellite-based ocean color sen-
sors, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer
(MODIS) (Esaias et al., 1998; McClain et al., 1998). Unlike the nitrate and oxygen, the satellite chlorophyll data
provide only near-surface information.

Table 1
Summary of Experiments

Experiment name Observation errors Description

DA-BGC Atmos: 1 m s21 (Wind), 1 K (Temp) Baseline assimilation run
Ocean: 0.5 K (Temp), 0.1 g kg21 (Salinity)

DA-BGC_Atm Atmos: 0.1 m s21 (Wind), 0.1 K (Temp) Strong atmosphere data constraint
Ocean: 0.5 K (Temp), 0.1 g kg21 (Salinity) Strong atmosphere data constraint

DA-BGC_opt Atmos: 0.1 m s21 (Wind), 0.1 K (Temp) Strong atmosphere data constraint
Ocean_eqa: 100 K (Temp), 20 g kg21 (Salinity) 1

Weak equatorial ocean data constraint

CTRL Atmos: 0.1 m s21 (Wind), 0.1 K (Temp) Control run
No ocean data assimilation

aError inflation values ramped up linearly to specified values from the 108 latitude to the equator. Error values else-
where are set to DA-BGC_Atm values.
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Our analysis focuses on the subsurface biogeochemistry in the top few hundred meters due to the relatively
short period of integration in the assimilation runs. Based on the assessment of the model performance on
mean and variability of physical/biogeochemical fields, the optimal combination of atmosphere and ocean
data constraints is chosen, named as DA-BGC_opt. This optimal assimilation run is run for the full period
1990–2015 and used for further analysis of simulated marine biogeochemistry.

To assess whether the optimal data assimilation still offers improvements relative to nonassimilative retro-
spective experiments, a control simulation, referred to as CTRL, is also conducted. In this run, the ocean
data assimilation process is switched off, thus the model is guided only by assimilated atmospheric fields
using the strong atmospheric constraint settings (Table 1). The 26 year long run with atmosphere-only
assimilation was looped three times and the data from the last cycle is used. This setup can be comparable
to the Common Ocean-ice Reference Experiment (CORE) protocol (Griffies et al., 2009), which is a standard
tool for analyzing past global ocean and biogeochemical variability (Griffies et al., 2014; Henson et al., 2010;
Lee et al., 2014).

All data assimilation experiments were started from the same initial condition. For the initialization of physi-
cal fields, a restart on 1 January 1990 produced by GFDL’s 1960–2015 reanalysis experiment of the ECDA is
used (Chang et al., 2013). For the initialization of biogeochemical field, the Global Data Analysis Project
(GLODAP) product is used for carbon system (DIC, Alk), the World Ocean Atlas (WOA) data for macronu-
trients (NO3, PO4, SiO4) and O2 (Garcia et al., 2010a, 2010b; Key et al., 2004). The initialization of other bio-
geochemical variables was drawn from the control simulation described in Stock et al. (2014b). The
nonassimilative run, CTRL, is initialized from the same biogeochemical initial condition as data assimilation
runs.

3. Degradation of Marine Biogeochemistry With Data Assimilation

The climatological annual means of modeled biogeochemical variables are compared with observations in
Figure 1. The control simulation without ocean data assimilation, CTRL, captures large-scale spatial patterns
in surface nitrate, subsurface oxygen, and surface chlorophyll. High nitrate and chlorophyll concentrations
in the tropics/high latitudes and the subsurface oxygen minimum zone averaged in 200–600 m depth are
fairly well represented. There are, however, substantial model discrepancies such as the overestimation of
subsurface oxygen in the Southern Ocean, overestimation of the intensity of hypoxia (defined here as
<2 mL/L) in the eastern equatorial Pacific and underestimation of its westward extension, and overestima-
tion of tropical chlorophyll concentration. Overall results from CTRL show similar performance to those

Figure 1. Annual mean surface nitrate from the (a) observations, (b) control run (CTRL), and (c) data assimilation (DA-BGC) runs integrated with an ocean biogeo-
chemical model. Plots (d–f) and (g–i) are similar to (a–c) except for subsurface oxygen averaged in 200–600 m depth and surface chlorophyll, respectively.
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from CORE-forced ocean model run (supporting information Figure S1), supporting the use of control run as
a natural benchmark to gauge improvements compared to data assimilation runs.

In the baseline assimilation run, DA-BGC, simulated biogeochemical variables generally show marked dis-
crepancies with observations, particularly in the tropics. The simulated tropical nitrate and chlorophyll con-
centrations in DA-BGC are particularly severe, with substantially higher than those in CTRL and observations
(cf. Figures 1a–1c, and 1g–1i). Data assimilation improves the spatial patterns of subsurface oxygen in the
tropical Pacific (Figure 1f), but an over-estimate of eastern Pacific oxygen has replaced the under-estimate
present in CTRL.

The degradation of biogeochemical variables in the DA-BGC run at the equator is also apparent in the verti-
cal structure of equatorial biogeochemistry (Figure 2). In contrast to the CTRL run, which captures the verti-
cal structures of equatorial nitrate and oxygen averaged between 28S and 28N, the DA-BGC run severely
over-estimates nitrate above 200 m while under-estimating nitrate below 200 m, implying enhanced nutri-
ent flux into the upper layer from the deeper oceans in DA-BGC. Iron, a critical limiting nutrient in the equa-
torial Pacific, is also provided by subsurface supply, resulting in excessive surface iron (not shown) and the
high surface chlorophyll concentration in DA-BGC (Figure 1i). In addition to degraded nutrient fields, the
simulated subsurface oxygen in the equatorial Pacific exhibits an upward shift of hypoxic center and sub-
stantially higher oxygen compared to the observation. Despite the overall degradation of biogeochemistry
simulation in DA-BGC, some regional improvements are observed in the Atlantic and Indian Ocean basins.

The degradation of simulated marine biogeochemistry after integration with physical data assimilation is
associated with increased magnitude and zonal structure in vertical velocities at the equator. The assimila-
tion run features stronger upwelling compared to CTRL (cf. Figures 2h and 2g). This enhanced vertical veloc-
ity is consistent with the spurious upwelling issue with data assimilation documented in previous studies
(e.g., Bell et al. 2004, Burgers et al. 2002; Waters et al. 2017). Assimilation of observed data into an ocean
model near the equator causes a dynamically unbalanced state, which leads to a relatively poor simulation
of zonal currents and spurious vertical velocity. The large vertical velocity causes increased upwelling of
nutrients, leading to excessive chlorophyll concentrations and increased subsurface oxygen through
increased ventilation. A nitrate budget analysis confirms that the excessive nitrate in the equatorial region
is dominated by the vertical advection of nitrate (supporting information Figure S2). As shown in Figure 1,
the momentum imbalance problem after assimilation is not apparent away from the equator. This is
because that geostrophic adjustment plays an important role in balancing ocean and atmosphere updates

Figure 2. Equatorial section of annual mean nitrate from the (a) observations, (b) CTRL, and (c) DA-BGC. Plots (d–f) are similar to (a–c) except for oxygen. Plots
(g–h) are similar to (b–c) except for vertical velocity.
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in the off-equatorial regions, preventing severe degradations of simulated velocity and biogeochemical
fields.

In addition to the comparison of mean state, variability of simulated marine biogeochemistry is also com-
pared with observations (Figure 3). The satellite-derived chlorophyll concentration provides a global-scale
multiyear record, thus this data set is used to examine the performance of the model in reproducing histori-
cal chlorophyll variability. It is found that the CTRL run can simulate the observed chlorophyll variability,
albeit modestly in many regions. The correlation coefficient is particularly high over the equatorial central
Pacific, where wind-driven ocean dynamical processes play a dominant role in determining surface temper-
ature and chlorophyll. In contrast, the DA-BGC run fails to reproduce the historical variability of tropical
chlorophyll concentration, exhibiting negative correlation coefficients in most parts of the equatorial Pacific.
This degradation is consistent with a failure to simulate interannual variability of vertical processes associ-
ated with equatorial primary productivity.

4. Methods for Reducing Equatorial Marine Biogeochemistry Biases

4.1. Impact of Wind Bias on Marine Biogeochemistry
The baseline DA-BGC experiment, which includes relatively loose atmospheric constraints (see section 2
and Table 1), results in stronger trade winds in the tropical Pacific compared to the NCEP2 reanalysis
(Figure 4). This stronger easterly intensifies poleward mass transport and equatorial upwelling, consistent
with the result in Figure 2h. Such biases would also enhance dynamical inconsistencies between assimilated
data (reflecting weaker easterlies) and the dynamical model solution, potentially exacerbating spurious
vertical velocities.

Figure 3. Temporal correlation maps of simulated chlorophyll from (a) CTRL and (b) DA-BGC with satellite-retrieved chlo-
rophyll concentrations. The correlation coefficients are calculated after removing monthly climatology during the ana-
lyzed period September 1997 to December 2015. The satellite chlorophyll data are bilinearly interpolated onto the
regular 1.08 3 1.08 model grid before calculating correlation coefficient.

Figure 4. Equatorial Pacific trade winds (10 m zonal mean wind averaged between 158S and 158N) from NCEP2 reanalysis,
DA-BGC, and DA-BGC_Atm.
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Imposing stronger atmospheric data constraints reduces the high wind speed bias in tropical Pacific easter-
lies (Figure 4) and consequently reduces equatorial upwelling compared to DA-BGC (Figure 5). However,
the upwelling structure in this DA-BGC_Atm run still shows large discrepancies with that in CTRL and verti-
cal striations of potentially spurious upwelling align with equatorial TOGA-TAO mooring array measure-
ments (Hayes et al., 1991), similar to DA-BGC (cf. Figures 5f and 2h). Moreover, the substantial
biogeochemical biases present in the DA-BGC run remain. For example, the upper level nitrate and chloro-
phyll is still too high compared to the observations and elevated relative to the CTRL (cf. Figures 5a and 1a).
The subsurface oxygen minimum in the equatorial Pacific is too weak below 200 m depth and the hypoxic
center is shallower than observations. The correlation map between simulated chlorophyll from DA-
BGC_Atm and satellite chlorophyll is still far from providing comparable fidelity shown in CTRL (supporting
information Figure S3). Overall results here show that imposing stronger atmospheric data constraints helps
to reduce the spurious upwelling problem and excessive equatorial productivity, but this is not enough to
recover the fidelity without assimilation shown in CTRL.

4.2. The Effect of Stricter Fidelity to Ocean Model Dynamics at the Equator
Figure 6 shows the mean vertical velocity and the mean bias of nitrate at the equator simulated from the
sensitivity experiments using different relative weightings of ocean data and model constraints. The obser-
vational standard errors of temperature here are inflated up to an extreme value of 1068C from the default
setting of 0.58C (for salinity, inflated up to 2 3 105 g kg21 from 0.1 g kg21) and run for 5 years (2001–2005)
after 1 year spin-up period (see Methods). When a weak ocean data constraint (i.e., T_obs_error 5 58C) is
applied, the magnitude and striation of the equatorial vertical velocity are decreased compared to the run
with the default observational standard errors (cf. Figures 6a and 6c). Moreover, the spurious upwelling col-
umn along the eastern boundary of the tropical Pacific disappears when using weak ocean data constraints.
Consistent with the reduction of spurious upwelling, the excessive equatorial nitrate is also considerably
reduced with the weak ocean data constraints (cf. Figures 6b and 6d). Further improvements in equatorial
upwelling and nitrate simulations are observed in the experiment using higher observational standard

Figure 5. (a) Annual mean surface nitrate and (b) equatorial section (averaged between 28S and 28N) of nitrate simulated from the data assimilation run with a
strong atmospheric data constraint (DA-BGC_Atm). (c) Subsurface oxygen averaged in 200–600 m depth, and (d) equatorial section of oxygen. Plots (e–f) are simi-
lar to (a–b) but for surface chlorophyll and equatorial section of vertical velocity, respectively.
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errors (e.g., T_obs_error 5 100 or 1068C), showing less evidence of spurious equatorial upwelling and more
realistic nitrate than the run with T_obs_error 5 58C.

Strengthening the model constraint relative to the data at the equator can clearly remove spurious veloci-
ties, but is there a combination that removes spurious velocities while still deriving some benefit from data
assimilation? To quantify the improvement of subsurface physical and biological fields, the root-mean-
square difference (RMSD) of equatorial temperature, nitrate, and oxygen from surface to 600 m depth are
calculated (Figure 7). Although the weakened ocean data constraint results in a trade-off between

Figure 6. (left plot) Equatorial section of annual mean vertical velocity and (right plot) mean bias of nitrate simulated
from the data assimilation runs with different observational standard errors in temperature, ranging from 0.5 to 1068C.
Higher ocean observational error refers to weaker ocean data constraint. The same rate of inflation of observational errors
is also applied to salinity. The mean nitrate bias is calculated with respect to the observation.
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mitigating biogeochemistry bias and increasing temperature bias, the degradation of temperature field rela-
tive to DA-BGC is not substantial. The temperature RMSDs from the different sensitivity runs are generally
much lower than that from CTRL. Nitrate RMSD, in contrast, declines substantially as dynamical integrity
within the model is weighted above data constraints, supporting biogeochemical gains at the equator even
when data assimilation is weakened. Compared to the dramatic improvement of nitrate simulations with
inflating data uncertainty, the performance of oxygen simulation is relatively stable across data assimilation
variants, but all are better than the control run even with small inflations of data uncertainty. These gains
are in addition to substantial improvements across other parts of the global ocean where strong oceanic
data constraints are maintained (see section 5).

It is notable that the data assimilation run using extremely high data uncertainty (i.e., T_obs_error 5 1068C,
equivalent to no equatorial ocean data assimilation) also shows biogeochemical gains similar to weak data
assimilation runs. This is because the primary improvements at the equator in the weak assimilation runs
arise from off-equatorial constraints that propagate inward via a combination of the 108 decorrelation scale
and the linear ramp-up of the error inflation from 108S/8N. This can be seen in the comparison of character-
istic temperature correction increments associated with assimilation for each experiment (Figure 8). Signifi-
cant increments extend below 58N/S with both T_obs_error 5 1008C and 1068C before becoming
vanishingly small in the 28 latitudinal band immediately around the equator. Improvements are thus seen at
the equator despite these small increments due to the off-equatorial constraints.

To further explore the impact of off-equatorial increments, we examine the experiments using different lati-
tudinal bands for the inflation of data uncertainty, 28S–28N and 208S–208N, keeping the observational stan-
dard error at the equator the same as in the weak assimilation (T_obs_error 5 1008C). The run with the
narrow latitudinal band of 28S–28N shows the degradation of biogeochemical simulation compared to the
run with the original latitudinal ramp in 108S–108N band (cf. circle and triangle marks in Figure 7). Given
that the 28S–28N run still shows strong temperature increments at and near the equator (supporting infor-
mation Figure S4a), the degradation is caused by the spurious upwelling problem as seen in other strong
data constraint runs such as the run with T_obs_error 5 28C. In the 208S–208N run, the degradation of bio-
geochemical simulation is reduced compared to the 28S–28N run, but its performance is still degraded com-
pared to the 108S–108N run due to weakened off-equatorial data constraints in the 208S–208N run
(supporting information Figure S4c). Overall, these results imply an optimal strategy of sufficiently weaken-
ing the equatorial (28S–28N) ocean data assimilation to suppress spurious upwelling while maximizing the
positive impacts of off-equatorial increments.

Figure 7. The root-mean-square difference (RMSD) of simulated subsurface equatorial (28S–28N; sfc-600 m) temperature
(black), nitrate (red), and oxygen (blue) compared to observations (temperature from EN4 data set, and nitrate and oxy-
gen from WOA data sets). Various observational temperature standard errors ranging from 0.58C (default) to 1068C are
used in this sensitivity experiments using the 108S–108N latitudinal extent of data uncertainty inflation. Triangle and rect-
angle marks represent the results from two extra runs with different latitudinal extents of data uncertainty inflation, 28S–
28N and 208S–208N, respectively. The RMSDs of temperature and nitrate simulated from the baseline (DA-BGC) and con-
trol (CTRL) run are also presented for the comparison with results from the sensitivity experiments.
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The result above supports that a weaker equatorial ocean data constraint relative to the model fidelity suc-
cessfully resolves excessive equatorial production without substantially sacrificing fidelity with physical
fields. Based on the finding in this section, we define our optimal run, DA-BGC_opt, as the one with strong
atmosphere data constraint (Wind_obs_error 5 0.1 ms 21) and weak ocean equatorial data constraint with
the latitudinal ramp in 108S–108N band (T_obs_error 5 1008C). Although other runs with weak ocean equa-
torial data constraint (e.g., T_obs_error 5 108C) show the good performance in simulating mean equatorial
biogeochemical fields as seen in Figure 7, we found that the observational error of 108C is not enough to
avoid degradations in temporal correlation skill of equatorial chlorophyll. Biogeochemical improvements
and trade-offs reflected in this optimal run relative to CTRL and default (DA-BGC) alternatives are explored
further in the next section.

5. Improved Biogeochemistry With Modified Assimilation Method

The mean and variability of marine biogeochemistry simulated by DA-BGC_opt shows much better agree-
ment with the observation than that simulated by DA-BGC. The high tropical chlorophyll concentration in DA-
BGC is reduced in DA-BGC_opt (Figure 9a). Variability of equatorial chlorophyll in DA-BGC_opt is also in a
good agreement with observations, largely recovering the fidelity shown in CTRL (cf. Figures 9b and 3). The
temporal correlation coefficients of the simulated versus observed chlorophyll in NINO3.4 region (1708W–

Figure 8. The zonally averaged standard deviation of temperature increments from sensitivity runs with various observa-
tional standard errors of (a) 28C, (b) 108C, (c) 1008C, and (d) 1068C.

Figure 9. (a) Annual mean surface chlorophyll simulated from DA-BGC_opt. (b) Correlation map of chlorophyll between
DA-BGC_opt and satellite data.
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1208W, 58S–58N) are 0.54 in DA-BGC_opt and 20.11 in DA-BGC, which is a notable improvement in the biolog-
ical field compared to the relatively minor trade-off in SST correlations, 0.97 in DA-BGC_opt and 0.98 in DA-
BGC in the same region. Compared to CTRL, the chlorophyll correlation skill in DA-BGC_opt is slightly worse in
NINO3.4 region (0.54 in DA-BGC_opt versus 0.63 in CTRL), while improved skill is apparent in the subtropics
and higher latitudes, particularly in the Atlantic (supporting information Figure S5b). The marked improve-
ment in the chlorophyll correlation skill in DA-BGC_opt relative to CTRL is probably due to a better representa-
tion of North Atlantic mixed layer that in turn improves chlorophyll simulation in the transition zone between
the warm-temperate and cold north Atlantic zones (supporting information Figure S6).

The tropical surface nitrate from DA-BGC_opt is also very similar in both pattern and magnitude to that
from the observation, indicating successful reduction of excessive nutrients in the tropics shown in DA-BGC
(Figure 10). Biogeochemical gains in DA-BGC_opt compared to CTRL are also notable (Figure 11). Although
the DA-BGC_opt and CTRL runs simulate very similar surface nitrate fields along the equator, the subsurface
nitrate from DA-BGC_opt is more consistent with the observation than that from CTRL, particularly when
comparing the subsurface nitrate in the Indian Ocean and at the eastern Pacific boundary. The total RMSD
and pattern correlation between observed and simulated equatorial subsurface nitrate are 2.80 lmol kg21

and 0.97 for DA-BGC_opt, and 3.60 lmol kg21 and 0.96 for CTRL, respectively.

The simulated subsurface hypoxia is also improved in the DA-BGC_opt run (Figures 10c and 10d). The
underestimation of equatorial subsurface oxygen found in DA-BGC, which is presumably caused by

Figure 10. (a) The annual mean surface nitrate and (b) the equatorial section of nitrate simulated from the modified data
assimilation run, DA-BGC_opt. (c) The annual mean subsurface oxygen averaged in 200–600 m depth and (d) the equato-
rial section of oxygen simulated from DA-BGC_opt.

Figure 11. The equatorial mean nitrate difference from the observation simulated in (a) CTRL, (b) DA-BGC, and (c) DA-BGC_opt. Plots (d–f) are similar to (a–c)
except for oxygen.
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unphysical ventilation due to spurious vertical velocities, is no longer pronounced in DA-BGC_opt. The sub-
surface oxygen is still underestimated in DA-BGC_opt compared to the observation, but this bias is reduced
relative to the CTRL (Figures 11d and 11f), and the vertical location of equatorial hypoxic center is better
represented in DA-BGC_opt than in DA-BGC (Figures 2f and 10d). Furthermore, observed hypoxia in the
north equatorial western Pacific is well captured in DA-BGC_opt, while that is absent in CTRL (Figure 12a).
Similar improvement can be found in the meridional structure and magnitude of subsurface hypoxia in the
eastern Pacific, particularly compared with DA-BGC (Figure 12b).

Summary statistics quantifying the performance of the simulated biogeochemistry are presented in Figure
13 (Taylor, 2001). Global mean and equatorial cross sections of nitrate, oxygen, and chlorophyll are used for
computing pattern correlation, standard deviation, and centered and total RMSD. The CTRL run, in which
ocean data assimilation is not applied, is generally in good agreement with observations showing pattern
correlations of over 0.9 for the global patterns of nitrate and oxygen, and 0.6 for that of chlorophyll (Figure
13a). When applying baseline data assimilation methods (DA-BGC), however, the simulated nitrate and chlo-
rophyll are degraded, lying farther from observations than CTRL, while oxygen is improved despite spurious
vertical velocities at the equator. The improvement of oxygen simulation in part reflects the presence of a
large low oxygen bias in the CTRL simulation. Spurious vertical velocities in DA-BGC remove this bias,

Figure 12. (left plot) The mean subsurface (averaged in 200–600 m depth) oxygen longitudinally averaged in the (a) west-
ern Pacific (1208E–1808E) and (b) eastern Pacific (1608W–1008W) from the observation (black), CTRL (black dashed), DA-
BGC (red), and DA-BGC_opt (blue).

Figure 13. Taylor diagram for summarizing performance of different data assimilation runs. The statistics including spatial correlation, normalized standard devia-
tion, and centered (or equivalently unbiased) root-mean-square difference (RMSD) are calculated based on the (a) global map and (b) equatorial section (28S–28N;
sfc-600 m) of nitrate, oxygen, and chlorophyll. The statistics for equatorial section of chlorophyll is omitted due to the lack of observations. The size of each dot
represents the total RMSD normalized by RMSD in DA-BGC.
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though the correction overshoots the initial bias to create an over-ventilated state (Figure 2f). Similar results
can be found for the equatorial section of nitrate and oxygen simulations (Figure 13b).

The DA-BGC_opt run largely resolves the issue in DA-BGC and generally shows robust agreement with chlo-
rophyll, nitrogen and oxygen. Skill has improved for all variables relative to the control, and skill has
improved markedly relative to DA-BGC for chlorophyll and nitrate. The only exception is oxygen, where DA-
BGC_opt shows a marked improvement relative to the CTRL but is slightly less skillful for the bias-corrected
standard deviation at the equator. The degradation of oxygen in DA-BGC_opt compared to DA-BGC is
because the simulation reverts back to underestimated subsurface oxygen in the Atlantic Ocean (Figures
11e and 11f; supporting information Figure S7d), though this feature has still been greatly improved relative
to CTRL. Furthermore, the skills in DA-BGC is partly rooted in artificial ocean ventilation via spurious veloci-
ties (supporting information Figure S8) that presumably compensate for other model deficiencies. Overall
results indicate that physical ocean data assimilation helps to improve simulated subsurface biogeochemis-
try fields relative to the unconstrained run when the momentum imbalance problem at the equator is ame-
liorated by maintaining stronger fidelity with the dynamical model solution.

6. Conclusion

This study suggests a viable, pragmatic approach to integrate an ocean biogeochemical model with an
ensemble coupled-climate data assimilation system. The major obstacle impeding the integration of data
assimilative ocean physics and biogeochemical modeling is the inevitable dynamical imbalance errors in
the assimilated system, particularly at the equator. The momentum imbalance problem enhances equatorial
upwelling, leading to excessive surface nutrients and productivity. This spurious upwelling caused by data
assimilation is efficiently suppressed by imposing stricter fidelity to the internal model dynamics over data
constraints near the equator. Weakening the ocean data constraint resulted in a modest degradation in
ocean temperature fidelity while bringing considerable biogeochemical gains. The simulated biogeochemi-
cal fields by our modified assimilation method show improved subsurface nutrient and oxygen fields at the
equator compared to both the unconstrained control run and the baseline data assimilation run, except in
the equatorial Atlantic. The temporal correlation skill of simulated versus observed chlorophyll in the equa-
torial Pacific is also improved by the modified assimilation run with respect to the baseline data assimilation
run, but not exceeding the skill in the unconstrained control run. In the North Atlantic, however, the chloro-
phyll correlation skill in the modified assimilation run turned out to be higher than that in the control run
due to a better representation of North Atlantic mixed layer depth by data assimilation. Such improvements
portend refined retrospective analyses of biogeochemical dynamics and a better basis for initializing bio-
geochemical fields in Earth system prediction systems.

Modulating the relative weighting of model versus data at the equator was a pragmatic choice driven by
the recognition that ocean biogeochemistry is extremely sensitive to dynamical imbalances in this region.
Efforts to reduce such imbalances during assimilation may ameliorate the need to adopt such an approach.
Even the latest approaches to address this issue, however, still produce vertical velocities that far exceed
those in free-running models (Waters et al., 2017). Our approach offers a means of advancing global earth
system prediction in parallel with these advances in physical data assimilation—gradually retightening
equatorial data constraints as advances in assimilation allow it.

The strengths and limitations in this pragmatic approach need to be weighed against the fully coupled
physical-biogeochemical data assimilation. Biogeochemical assimilation can remove substantial biogeo-
chemical biases by assimilating chlorophyll or other biogeochemical quantities (Ford & Barciela, 2017;
Gregg, 2008; While et al., 2012). Such assimilation also offers an alternative means of removing the imprint
of spurious vertical velocities. It should be recognized, however, that biogeochemical assimilation in such
cases may be masking effects of spurious motions that remain in the simulation. Adding biogeochemical
assimilation to physical assimilation would ideally improve simulated biogeochemistry relative to patterns
resulting from physical ocean properties that have been universally improved, or at least not deteriorated,
relative to free-running cases. The pragmatic approach presented provides a path for achieving such a
robust physical platform to support further improvement via biogeochemical simulation. It is recognized,
however, that down-weighting observations at the equator in favor of model dynamics at the equator
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forgoes ocean state information provided by this data. The need for this compromise can hopefully be
addressed by continued data assimilation advances.
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